Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9293, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915240

RESUMO

Ehrlichia chaffeensis, a tick-transmitted rickettsial bacterium, is the causative agent of human monocytic ehrlichiosis. Biochemical characterization of this and other related Rickettsiales remains a major challenge, as they require a host cell for their replication. We investigated the use of an axenic medium for E. chaffeensis growth, assessed by protein and DNA synthesis, in the absence of a host cell. E. chaffeensis organisms harvested from in vitro cultures grown in a vertebrate cell line were fractionated into infectious dense-core cells (DC) and the non-infectious replicating form, known as reticulate cells (RC) by renografin density gradient centrifugation and incubated in the axenic medium containing amino acids, nucleotides, and different energy sources. Bacterial protein and DNA synthesis were observed in RCs in response to glucose-6-phosphate, although adenosine triphosphate, alpha-ketoglutarate or sodium acetate supported protein synthesis. The biosynthetic activity could not be detected in DCs in the axenic medium. While the data demonstrate de novo protein and DNA synthesis under axenic conditions for E. chaffeensis RCs, additional modifications are required in order to establish conditions that support bacterial replication, and transition to DCs.


Assuntos
Cultura Axênica , DNA/biossíntese , Ehrlichia chaffeensis/metabolismo , Biossíntese de Proteínas , Carbono/farmacologia , Sistema Livre de Células , Diatrizoato de Meglumina/metabolismo , Ehrlichia chaffeensis/ultraestrutura , Concentração de Íons de Hidrogênio , Modelos Biológicos , RNA/biossíntese , RNA Ribossômico 16S/genética
2.
J Asia Pac Entomol ; 21(3): 852-863, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34316264

RESUMO

The lone star tick, Amblyomma americanum, is an obligatory ectoparasite of many vertebrates and the primary vector of Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis. This study aimed to investigate the comparative transcriptomes of A. americanum underlying the processes of pathogen acquisition and of immunity towards the pathogen. Differential expression of the whole body transcripts in six different treatments were compared: females and males that were E. chaffeensis non-exposed, E. chaffeensis-exposed/uninfected, and E. chaffeensis-exposed/infected. The Trinity assembly pipeline produced 140,574 transcripts from trimmed and filtered total raw sequence reads (approximately 117M reads). The gold transcript set of the transcriptome data was established to minimize noise by retaining only transcripts homologous to official peptide sets of Ixodes scapularis and A. americanum ESTs and transcripts covered with high enough frequency from the raw data. Comparison of the gene ontology term enrichment analyses for the six groups tested here revealed an up-regulation of genes for defense responses against the pathogen and for the supply of intracellular Ca++ for pathogen proliferation in the pathogen-exposed ticks. Analyses of differential expression, focused on functional subcategories including immune, sialome, neuropeptides, and G protein-coupled receptor, revealed that E. chaffeensis-exposed ticks exhibited an upregulation of transcripts involved in the immune deficiency (IMD) pathway, antimicrobial peptides, Kunitz, an insulin-like peptide, and bursicon receptor over unexposed ones, while transcripts for metalloprotease were down-regulated in general. This study found that ticks exhibit enhanced expression of genes responsible for defense against E. chaffeensis.

3.
Sci Rep ; 7(1): 15801, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150636

RESUMO

Obligate intracellular bacteria (obligates) belonging to Rickettsiales and Chlamydiales cause diseases in hundreds of millions of people worldwide and in many animal species. Lack of an efficient system for targeted mutagenesis in obligates remains a major impediment in understanding microbial pathogenesis. Challenges in creating targeted mutations may be attributed to essential nature of majority of the genes and intracellular replication dependence. Despite success in generating random mutations, a method that works well in creating mutations in specific genes of interest followed by complementation remains problematic for obligates and is a highly sought-after goal. We describe protocols to generate stable targeted mutations by allelic exchange in Ehrlichia chaffeensis, an obligate intracellular tick-borne bacterium responsible for human monocytic ehrlichiosis. Targeted mutations in E. chaffeensis were created to disrupt two genes, and also to restore one gene by another allelic exchange mutation leading to the restoration of transcription and protein expression from the inactivated gene and the recovered organisms also express mCherry, which distinguishes from the wild type. We expect that the methods developed are broadly applicable to other obligates, particularly to rickettsial pathogens, to routinely perform targeted mutations to enable studies focused on protein structure-function analyses, host-pathogen interactions and in developing vaccines.


Assuntos
Ehrlichia chaffeensis/genética , Marcação de Genes/métodos , Genes Bacterianos , Mutação/genética , Alelos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/genética , Recombinação Homóloga/genética , Mutagênese Sítio-Dirigida , Fenótipo , Plasmídeos/genética , RNA/genética , Transcrição Gênica , Transformação Genética
4.
FEMS Microbiol Lett ; 364(6)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333306

RESUMO

Ehrlichia chaffeensis is an obligatory intracellular pathogen transmitted through infected ticks to humans and other vertebrates. We investigated the extent of protein aggregation in E. chaffeensis during infection of canine macrophage cell line, DH82. We discovered that the size of the aggregated fraction of E. chaffeensis proteins increased during the first 48 h post infection. We also incubated the infected cells with guanidinium chloride (GuHCl), a known inhibitor of the protein-disaggregating molecular chaperone ClpB. Up to 0.5 mM GuHCl had no impact on the host cells, whereas the viability of the pathogen was reduced by ∼60% in the presence of the inhibitor. Furthermore, we found that the size of the aggregated protein fraction in E. chaffeensis increased significantly in cultures supplemented with 0.5 mM GuHCl, which also resulted in the preferential accumulation of ClpB with the aggregated proteins. Altogether, our results suggest that an exposure of E. chaffeensis to the stressful environment of a host cell results in an increased aggregation of the pathogen's proteins, which is exacerbated upon inhibition of ClpB. Our studies establish a link between protein quality control and pathogen survival during infection of a host.


Assuntos
Proteínas de Bactérias/metabolismo , Ehrlichia chaffeensis/fisiologia , Agregados Proteicos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Western Blotting , Linhagem Celular , Sobrevivência Celular , Cães , Ehrlichiose/microbiologia , Expressão Gênica , Humanos , Hidrólise , Proteólise , Solubilidade
5.
Ticks Tick Borne Dis ; 8(1): 60-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729288

RESUMO

Monocytic ehrlichiosis in people caused by the intracellular bacterium, Ehrlichia chaffeensis, is an emerging infectious disease transmitted by the lone star tick, Amblyomma americanum. Tick transmission disease models for ehrlichiosis require at least two hosts and two tick blood feeding episodes to recapitulate the natural transmission cycle. One blood feeding is necessary for the tick to acquire the infection from an infected host and the next feeding is needed to transmit the bacterium to a naïve host. We have developed a model for E. chaffeensis transmission that eliminates the entire tick acquisition stage while still producing high numbers of infected ticks that are also able to transmit infections to naïve hosts. Fully engorged A. americanum nymphs were ventrally needle-infected, possibly into the midgut, and following molting, the unfed adult ticks were used to infect naive deer and dogs. We have also described using the ticks infected by this method the transmission of both wild-type and transposon mutants of E. chaffeensis to its primary reservoir host, white tailed deer and to another known host, dog. The infection progression and IgG antibody responses in deer were similar to those observed with transmission feeding of ticks acquiring infection by natural blood feeding. The pathogen infections acquired by natural tick transmission and by feeding needle-infected ticks on animals were also similar to intravenous infections in causing persistent infections. Needle-infected ticks having the ability to transmit pathogens will be a valuable resource to substantially simplify the process of generating infected ticks and to study infection systems in vertebrate hosts where interference of other pathogens could be avoided.


Assuntos
Vetores Artrópodes/microbiologia , Cervos/microbiologia , Doenças do Cão/microbiologia , Ehrlichia chaffeensis/fisiologia , Ehrlichiose/veterinária , Ixodidae/microbiologia , Animais , Doenças do Cão/transmissão , Cães , Ehrlichiose/microbiologia , Ehrlichiose/transmissão , Regulação Bacteriana da Expressão Gênica , Mutação
6.
Vector Borne Zoonotic Dis ; 16(9): 569-76, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27454144

RESUMO

The variations in prevalence levels of two tick-borne rickettsial pathogens, Ehrlichia chaffeensis and Ehrlichia Ewingii, in a periurban environment were evaluated along with their ecological determinants. Tick life stage and sex, month of tick collection, landscape fragmentation, and ecological covariates specific to pasture and woodland sites were considered as explanatory covariates. Questing lone star ticks (Amblyomma americanum) were collected by flagging for an hour once every week during mid-April through mid-August in years 2013 and 2014. A total of 4357 adult and nymphal ticks (woodland = 2720 and pasture = 1637) were collected and assessed for pathogen prevalence by molecular methods. Female A. americanum ticks were more infected with E. chaffeensis than males or nymphs in woodland areas [♂ = 6.05%; ♀ = 12.0%; nymphs = 2.09%] and pastures [♂ = 8.05%; ♀ = 12.03%; nymphs = 3.33%], and the prevalence was influenced by edge density in the landscape. Higher E. ewingii infection was noted among female A. americanum ticks within woodland areas [♂ = 1.89%; ♀ = 2.14%; nymphs = 1.57%], but no such difference was evident in pastures [♂ = 1.03%; ♀ = 1.33%; nymphs = 1.12%]. Prevalence of E. ewingii was influenced by edge contrast index, and the percentage of pasture perimeter that was less than 20 meters from woodland areas. This study elucidates the complexity of tick-borne pathogen ecology and points to the need for further studies on the role of reservoir hosts, particularly that played by small vertebrates, which is not fully understood in the region.


Assuntos
Ecossistema , Ehrlichia/classificação , Ehrlichia/isolamento & purificação , Carrapatos/microbiologia , Animais , Cidades , DNA Bacteriano/genética , Ehrlichia/genética , Feminino , Kansas , Masculino , Ninfa/microbiologia , Reação em Cadeia da Polimerase , Zoonoses
7.
PLoS One ; 11(2): e0148239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840398

RESUMO

Dogs acquire infections with the Anaplasmataceae family pathogens, E. canis, E. chaffeensis, E. ewingii, A. platys and A. phagocytophilum mostly during summer months when ticks are actively feeding on animals. These pathogens are also identified as causing diseases in people. Despite the long history of tick-borne diseases in dogs, much remains to be defined pertaining to the clinical and pathological outcomes of infections with these pathogens. In the current study, we performed experimental infections in dogs with E. canis, E. chaffeensis, A. platys and A. phagocytophilum. Animals were monitored for 42 days to evaluate infection-specific clinical, hematological and pathological differences. All four pathogens caused systemic persistent infections detectible throughout the 6 weeks of infection assessment. Fever was frequently detected in animals infected with E. canis, E. chaffeensis, and A. platys, but not in dogs infected with A. phagocytophilum. Hematological differences were evident in all four infected groups, although significant overlap existed between the groups. A marked reduction in packed cell volume that correlated with reduced erythrocytes and hemoglobin was observed only in E. canis infected animals. A decline in platelet numbers was common with E. canis, A. platys and A. phagocytophilum infections. Histopathological lesions in lung, liver and spleen were observed in all four groups of infected dogs; infection with E. canis had the highest pathological scores, followed by E. chaffeensis, then A. platys and A. phagocytophilum. All four pathogens induced IgG responses starting on day 7 post infection, which was predominantly comprised of IgG2 subclass antibodies. This is the first detailed investigation comparing the infection progression and host responses in dogs after inoculation with four pathogens belonging to the Anaplasmataceae family. The study revealed a significant overlap in clinical, hematological and pathological changes resulting from the infections.


Assuntos
Anaplasma/imunologia , Anaplasmose/microbiologia , Doenças do Cão/imunologia , Ehrlichia/imunologia , Ehrlichiose/microbiologia , Doenças Transmitidas por Carrapatos/veterinária , Anaplasma/patogenicidade , Animais , Plaquetas/imunologia , Doenças do Cão/microbiologia , Cães , Ehrlichia/patogenicidade , Ehrlichiose/veterinária , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Fígado/microbiologia , Pulmão/microbiologia , Contagem de Plaquetas , Baço/microbiologia , Doenças Transmitidas por Carrapatos/imunologia , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/microbiologia
8.
PLoS One ; 11(2): e0148229, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26841025

RESUMO

Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ehrlichia chaffeensis/imunologia , Ehrlichiose/veterinária , Vacinas Antirrickéttsia/imunologia , Vacinação/veterinária , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proliferação de Células , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/imunologia , Ehrlichiose/microbiologia , Ehrlichiose/prevenção & controle , Insetos Vetores/microbiologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Carrapatos/microbiologia
9.
PLoS One ; 10(7): e0132657, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186429

RESUMO

Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen's reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis.


Assuntos
Ehrlichia chaffeensis/genética , Regulação da Expressão Gênica , Especificidade de Hospedeiro/genética , Mutação/genética , Animais , Southern Blotting , Cervos/microbiologia , Cães/microbiologia , Ehrlichiose/sangue , Ehrlichiose/microbiologia , Ehrlichiose/veterinária , Injeções , Insetos Vetores/microbiologia , Mutagênese Insercional/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Carrapatos/microbiologia , Transcrição Gênica
10.
Infect Immun ; 83(7): 2827-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25916990

RESUMO

Ehrlichia chaffeensis, a tick-borne rickettsial organism, causes the disease human monocytic ehrlichiosis. The pathogen also causes disease in several other vertebrates, including dogs and deer. In this study, we assessed two clonally purified E. chaffeensis mutants with insertions within the genes Ech_0379 and Ech_0660 as vaccine candidates in deer and dogs. Infection with the Ech_0379 mutant and challenge with wild-type E. chaffeensis 1 month following inoculation with the mutant resulted in the reduced presence of the organism in blood compared to the presence of wild-type infection in both deer and dogs. The Ech_0660 mutant infection resulted in its rapid clearance from the bloodstream. The wild-type infection challenge following Ech_0660 mutant inoculation also caused the pathogen's clearance from blood and tissue samples as assessed at the end of the study. The Ech_0379 mutant-infected and -challenged animals also remained positive for the organism in tissue samples in deer but not in dogs. This is the first study that documents that insertion mutations in E. chaffeensis that cause attenuated growth confer protection against wild-type infection challenge. This study is important in developing vaccines to protect animals and people against Ehrlichia species infections.


Assuntos
Vacinas Bacterianas/imunologia , Ehrlichia chaffeensis/imunologia , Ehrlichiose/prevenção & controle , Ehrlichiose/veterinária , Animais , Carga Bacteriana , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Sangue/microbiologia , Cervos , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/imunologia , Genes Bacterianos , Humanos , Mutagênese Insercional , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
11.
PLoS One ; 9(10): e109056, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25303515

RESUMO

Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.


Assuntos
Cervos/microbiologia , Cães/microbiologia , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichiose/transmissão , Ehrlichiose/veterinária , Macrófagos/microbiologia , Carrapatos/microbiologia , Animais , Vetores Aracnídeos/microbiologia , Linhagem Celular , Ehrlichiose/sangue , Humanos
12.
Vet Microbiol ; 172(1-2): 334-8, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24894131

RESUMO

Ehrlichia chaffeensis, the etiologic agent of human monocytic ehrlichiosis, is a tick-borne rickettsial pathogen that is infective to a wide range of mammals, including dogs and people. Amblyomma americanum, the lone star tick, is considered the primary vector of E. chaffeensis, but this pathogen has been detected in other tick species, including the brown dog tick, Rhipicephalus sanguineus. We hypothesized that the Arkansas strain of E. chaffeensis is infective to R. sanguineus, and used a novel PCR assay to test for acquisition of this pathogen by R. sanguineus and A. americanum ticks that were simultaneously fed on experimentally infected dogs. Although E. chaffeensis was not frequently detected in peripheral blood of these dogs, the pathogen was detected in both tick species and in canine lung, kidney, lymph node, bone marrow and frontal lobe samples. One dog (AFL) was maintained for several years, and ticks again acquired E. chaffeensis from this dog 566 days after intradermal inoculation with E. chaffeensis, but the pathogen was not detected in ticks fed on the same dog at 764 or 1086 days after the intradermal inoculation.


Assuntos
DNA Bacteriano/isolamento & purificação , Doenças do Cão/microbiologia , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichiose/veterinária , Ixodidae/microbiologia , Animais , Vetores de Doenças , Doenças do Cão/transmissão , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/microbiologia , Ehrlichiose/transmissão , Masculino , Reação em Cadeia da Polimerase/métodos , Rhipicephalus sanguineus/microbiologia , Fatores de Tempo
13.
PLoS One ; 8(11): e81780, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278458

RESUMO

Bacterial gene transcription is initiated by RNA polymerase containing a sigma factor. To understand gene regulation in Ehrlichia chaffeensis, an important tick-transmitted rickettsiae responsible for human monocytic ehrlichiosis, we initiated studies evaluating the transcriptional machinery of several genes of this organism. We mapped the transcription start sites of 10 genes and evaluated promoters of five genes (groE, dnaK, hup, p28-Omp14 and p28-Omp19 genes). We report here that the RNA polymerase binding elements of E. chaffeensis gene promoters are highly homologous for its only two transcription regulators, sigma 32 and sigma 70, and that gene expression is accomplished by either of the transcription regulators. RNA analysis revealed that although transcripts for both sigma 32 and sigma 70 are upregulated during the early replicative stage, their expression patterns remained similar for the entire replication cycle. We further present evidence demonstrating that the organism's -35 motifs are essential to transcription initiations. The data suggest that E. chaffeensis gene regulation has evolved to support the organism's growth, possibly to facilitate its intraphagosomal growth. Considering the limited availability of genetic tools, this study offers a novel alternative in defining gene regulation in E. chaffeensis and other related intracellular pathogens.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Ehrlichia chaffeensis/genética , Genes Bacterianos , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , RNA Polimerases Dirigidas por DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética , Homologia de Sequência de Aminoácidos
14.
PLoS One ; 8(5): e62454, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667479

RESUMO

Rickettsiale diseases, including human monocytic ehrlichiosis caused by Ehrlichia chaffeensis, are the second leading cause of the tick-borne infections in the USA and a growing health concern. Little is known about how E. chaffeensis survives the host-induced stress in vertebrate and tick hosts. A molecular chaperone ClpB from several microorganisms has been reported to reactivate aggregated proteins in cooperation with the co-chaperones DnaK/DnaJ/GrpE (KJE). In this study, we performed the first biochemical characterization of ClpB from E. chaffeensis. The transcript of E. chaffeensis ClpB (EhClpB) is strongly upregulated after infection of cultured macrophages and its level remains high during the Ehrlichia replicative stage. EhClpB forms ATP-dependent oligomers and catalyzes the ATP hydrolysis, similar to E. coli ClpB (EcClpB), but its ATPase activity is insensitive to the EcClpB activators, casein and poly-lysine. EhClpB in the presence of E. coli KJE efficiently reactivates the aggregated glucose-6-phosphate dehydrogenase (G6PDH) and firefly luciferase. Unlike EcClpB, which requires the co-chaperones for aggregate reactivation, EhClpB reactivates G6PDH even in the absence of KJE. Moreover, EhClpB is functionally distinct from EcClpB as evidenced by its failure to rescue a temperature-sensitive phenotype of the clpB-null E. coli. The clpB expression pattern during the E. chaffeensis infection progression correlates with the pathogen's replicating stage inside host cells and suggests an essential role of the disaggregase activity of ClpB in the pathogen's response to the host-induced stress. This study sets the stage for assessing the importance of the chaperone activity of ClpB for E. chaffeensis growth within the mammalian and tick hosts.


Assuntos
Ehrlichia chaffeensis/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Linhagem Celular , Cães , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/crescimento & desenvolvimento , Ehrlichia chaffeensis/fisiologia , Escherichia coli/genética , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Resposta ao Choque Térmico , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Análise de Sequência
15.
PLoS Pathog ; 9(2): e1003171, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23459099

RESUMO

Ehrlichia chaffeensis is a tick transmitted pathogen responsible for the disease human monocytic ehrlichiosis. Research to elucidate gene function in rickettsial pathogens is limited by the lack of genetic manipulation methods. Mutational analysis was performed, targeting to specific and random insertion sites within the bacterium's genome. Targeted mutagenesis at six genomic locations by homologous recombination and mobile group II intron-based methods led to the consistent identification of mutants in two genes and in one intergenic site; the mutants persisted in culture for 8 days. Three independent experiments using Himar1 transposon mutagenesis of E. chaffeensis resulted in the identification of multiple mutants; these mutants grew continuously in macrophage and tick cell lines. Nine mutations were confirmed by sequence analysis. Six insertions were located within non-coding regions and three were present in the coding regions of three transcriptionally active genes. The intragenic mutations prevented transcription of all three genes. Transposon mutants containing a pool of five different insertions were assessed for their ability to infect deer and subsequent acquisition by Amblyomma americanum ticks, the natural reservoir and vector, respectively. Three of the five mutants with insertions into non-coding regions grew well in deer. Transposition into a differentially expressed hypothetical gene, Ech_0379, and at 18 nucleotides downstream to Ech_0230 gene coding sequence resulted in the inhibition of growth in deer, which is further evidenced by their failed acquisition by ticks. Similarly, a mutation into the coding region of ECH_0660 gene inhibited the in vivo growth in deer. This is the first study evaluating targeted and random mutagenesis in E. chaffeensis, and the first to report the generation of stable mutants in this obligate intracellular bacterium. We further demonstrate that in vitro mutagenesis coupled with in vivo infection assessment is a successful strategy in identifying genomic regions required for the pathogen's in vivo growth.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Cervos/microbiologia , Ehrlichia chaffeensis/genética , Ehrlichiose/transmissão , Mutação/genética , Carrapatos/microbiologia , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Southern Blotting , Células Cultivadas , Cervos/genética , Ehrlichia chaffeensis/efeitos dos fármacos , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose/genética , Ehrlichiose/veterinária , Genoma Bacteriano , Humanos , Macrófagos/microbiologia , Dados de Sequência Molecular , Mutagênese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Carrapatos/genética
16.
PLoS One ; 7(5): e36749, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615806

RESUMO

BACKGROUND: Ehrlichia chaffeensis is an emerging tick-borne rickettsial pathogen responsible for human monocytic ehrlichiosis. Despite the induction of an active host immune response, the pathogen has evolved to persist in its vertebrate and tick hosts. Understanding how the organism progresses in tick and vertebrate host cells is critical in identifying effective strategies to block the pathogen transmission. Our recent molecular and proteomic studies revealed differences in numerous expressed proteins of the organism during its growth in different host environments. METHODOLOGY/PRINCIPAL FINDINGS: Transmission electron microscopy analysis was performed to assess morphological changes in the bacterium within macrophages and tick cells. The stages of pathogen progression observed included the attachment of the organism to the host cells, its engulfment and replication within a morulae by binary fission and release of the organisms from infected host cells by complete host cell lysis or by exocytosis. E. chaffeensis grown in tick cells was highly pleomorphic and appears to replicate by both binary fission and filamentous type cell divisions. The presence of Ehrlichia-like inclusions was also observed within the nucleus of both macrophages and tick cells. This observation was confirmed by confocal microscopy and immunoblot analysis. CONCLUSIONS/SIGNIFICANCE: Morphological differences in the pathogen's progression, replication, and processing within macrophages and tick cells provide further evidence that E. chaffeensis employs unique host-cell specific strategies in support of adaptation to vertebrate and tick cell environments.


Assuntos
Ehrlichia chaffeensis/ultraestrutura , Macrófagos/microbiologia , Microscopia Eletrônica de Transmissão/métodos , Carrapatos/microbiologia , Animais , Western Blotting , Ehrlichia chaffeensis/crescimento & desenvolvimento , Microscopia Confocal
17.
BMC Microbiol ; 9: 99, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19454021

RESUMO

BACKGROUND: Ehrlichia chaffeensis is a rickettsial agent responsible for an emerging tick-borne illness, human monocytic ehrlichiosis. Recently, we reported that E. chaffeensis protein expression is influenced by macrophage and tick cell environments. We also demonstrated that host response differs considerably for macrophage and tick cell-derived bacteria with delayed clearance of the pathogen originating from tick cells. RESULTS: In this study, we mapped differences in the promoter regions of two genes of p28-Omp locus, genes 14 and 19, whose expression is influenced by macrophage and tick cell environments. Primer extension and quantitative RT-PCR analysis were performed to map transcription start sites and to demonstrate that E. chaffeensis regulates transcription in a host cell-specific manner. Promoter regions of genes 14 and 19 were evaluated to map differences in gene expression and to locate RNA polymerase binding sites. CONCLUSION: RNA analysis and promoter deletion analysis aided in identifying differences in transcription, DNA sequences that influenced promoter activity and RNA polymerase binding regions. This is the first description of a transcriptional machinery of E. chaffeensis. In the absence of available genetic manipulation systems, the promoter analysis described in this study can serve as a novel molecular tool for mapping the molecular basis for gene expression differences in E. chaffeensis and other related pathogens belonging to the Anaplasmataceae family.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Ehrlichia chaffeensis/genética , Macrófagos/microbiologia , Regiões Promotoras Genéticas , Carrapatos/microbiologia , Animais , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Cães , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Dados de Sequência Molecular , RNA Bacteriano/genética , Especificidade da Espécie , Sítio de Iniciação de Transcrição , Transcrição Gênica
18.
Front Biosci (Landmark Ed) ; 14(9): 3259-73, 2009 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273271

RESUMO

Several tick-transmitted Anaplasmataceae family rickettsiales of the genera Ehrlichia and Anaplasma have been discovered in recent years. Some species are classified as pathogens causing emerging diseases with growing health concern for people. They include human monocytic ehrlichiosis, human granulocytic ewingii ehrlichiosis and human granulocytic anaplasmosis which are caused by Ehrlichia chaffeensis, E. ewingii and Anaplasma phagocytophilum, respectively. Despite the complex cellular environments and defense systems of arthropod and vertebrate hosts, rickettsials have evolved strategies to evade host clearance and persist in both vertebrate and tick host environments. For example, E. chaffeensis growing in vertebrate macrophages has distinct patterns of global host cell-specific protein expression and differs considerably in morphology compared with its growth in tick cells. Immunological studies suggest that host cell-specific differences in Ehrlichia gene expression aid the pathogen, extending its survival. Bacteria from tick cells persist longer when injected into mice compared with mammalian macrophage-grown bacteria, and the host response is also significantly different. This review presents the current understanding of tick-Ehrlichia interactions and implications for future.


Assuntos
Ehrlichia/fisiologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Carrapatos/microbiologia , Animais , Carrapatos/citologia
19.
Curr Protoc Microbiol ; Chapter 3: Unit 3A.1, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18770537

RESUMO

Tick-borne illnesses are emerging as a major concern for human health in recent years. These include the human monocytic ehrlichiosis caused by the Amblyomma americanum tick-transmitted bacterium, Ehrlichia chaffeensis; human ewingii ehrlichiosis caused by Ehrlichia ewingii (also transmitted by A. americanum ticks); and human granulocytic anaplasmosis caused by the Ixodes scapularis tick-transmitted pathogen, Anaplasma phagocytophilum. Likewise, tick-borne rickettsial pathogens are also a major concern to the health of various vertebrates including dogs, cattle, and several wild animals. In vitro-cultured pathogens grown in a vertebrate host cell and a tick cell culture system will be useful in studies to understand the pathogenic differences as well as to perform experimental infection studies and to generate large quantities of purified antigens. In this unit, methods for culturing E. chaffeensis and Ehrlichia canis (a canine monocytic ehrlichiosis pathogen) in cell lines to represent vertebrate and tick hosts are described. The unit also includes methods useful in purifying bacteria from the host cells and to evaluate proteins by 2-D gel electrophoresis and western blotting.


Assuntos
Técnicas Bacteriológicas/métodos , Ehrlichia canis/crescimento & desenvolvimento , Ehrlichia chaffeensis , Biologia Molecular/métodos , Proteômica/métodos , Animais , Western Blotting , Linhagem Celular , Criopreservação , Cães , Ehrlichia chaffeensis/citologia , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/crescimento & desenvolvimento , Ehrlichia chaffeensis/isolamento & purificação , Ehrlichia chaffeensis/metabolismo , Eletroforese em Gel Bidimensional , Técnica Indireta de Fluorescência para Anticorpo , Coloração e Rotulagem , Carrapatos
20.
Curr Protoc Microbiol ; Chapter 3: Unit 3A.3, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18770538

RESUMO

Human monocytic ehrlichiosis (HME), caused by Ehrlichia chaffeensis, was first recognized in 1986. Infection with this pathogen can be fatal in immune compromised and elderly humans. E. chaffeensis can also infect dogs and several wild animals. The clinical symptoms of HME include fever, headache, malaise, myalgia, confusion, rash, lymphadenopathy, and nausea. White-tailed deer serve as the major reservoir host for the natural maintenance of E. chaffeensis. E. canis is primarily responsible for the canine monocytic ehrlichiosis and is endemic throughout the world. It has a significant impact on the health of dogs. The isolation and growth of Ehrlichia species from vertebrate host samples is difficult and time consuming. In this unit, methods to recover E. chaffeensis and E. canis from infected blood samples collected from dogs, deer, and human patients are described. PCR and RT-PCR methods for sensitive detection of Ehrlichia infection are also discussed.


Assuntos
Técnicas Bacteriológicas/métodos , Ehrlichia/isolamento & purificação , Ehrlichiose/microbiologia , Ehrlichiose/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Sangue/microbiologia , Cervos , Cães , Ehrlichia/genética , Humanos , Camundongos , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...